If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24y^2+80y+25=0
a = 24; b = 80; c = +25;
Δ = b2-4ac
Δ = 802-4·24·25
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20\sqrt{10}}{2*24}=\frac{-80-20\sqrt{10}}{48} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20\sqrt{10}}{2*24}=\frac{-80+20\sqrt{10}}{48} $
| 10-5n=14+7n | | 16+8n=24+6n | | -100x-50=500 | | 6=x^2+8x+18 | | -3.5=x/0.2 | | 11+5n=20+2n | | 12/5x=21/10 | | .58+.15x=$4.78 | | -81y^-1+y=0 | | -7.5=x+5.5 | | 3x-1=5x+1.X=51/2 | | Y-81y^-1Y=0 | | 7/v+5=8 | | 3x-5(x-3)=-4+3x-1 | | 2x+15=27-6x | | -12x-11=-11x+1 | | -15+7x=-2(-15+1x) | | 6/x+8/x+5=3 | | 5h/6-15=411/12 | | n+3/11+n=1/2 | | -3(4x-5)=-57 | | 3(5x-12)+8=5(2x+6) | | 6c-6=8 | | 0.2=2x=3 | | 5y-50=67.5 | | y-54/5=8 | | 2x-5(x-3)=-7+4x+8 | | 7+5(3x-4)-6=4(3x+2)-6x | | 3x-5(x-2)=-5+3x-15 | | 27=3^2x-1 | | 4(w+-6)=-12 | | 9x+1/2x=28 |